Home


INDUCTION MOTOR - 2

induction motor

ENCLOSURE:

The enclosure consists of a frame (or yoke) and two end brackets (or bearing housings). The stator is mounted inside the frame. The rotor fits inside the stator with a slight air gap separating it from the stator. There is no direct physical connection between the rotor and the stator. The enclosure also protects the electrical and operating parts of the motor from harmful effects of the environment in which the motor operates. Bearings, mounted on the shaft, support the rotor and allow it to turn. A fan, also mounted on the shaft, is used on the motor shown below for cooling.

ELECTROMAGNETISM:

When current flows through a conductor a magnetic field is produced around the conductor. The magnetic field is made up of lines of flux, just like a natural magnet. The size and strength of the magnetic field will increase and decrease as  the current flow strength increases and decreases.

LEFT HAND RULE FOR CONDUCTORS:

A definite relationship exists between the direction of current flow and the direction of the magnetic field. The left-hand rule for conductors demonstrates this relationship. If a currentcarrying conductor is grasped with the left hand with the thumb pointing in the direction of electron flow, the fingers will point in the direction of the magnetic lines of flux.

wpeA.jpg (7821 bytes)

 

ELECTROMAGNET:

An electromagnet can be made by winding the conductor into a coil and applying a DC voltage. The lines of flux, formed by current flow through the conductor, combine to produce a larger and stronger magnetic field. The center of the coil is known as the core. In this simple electromagnet the core is air.

Iron is a better conductor of flux than air. The air core of an electromagnet can be replaced by a piece of soft iron. When a piece of iron is placed in the center of the coil more lines of flux can flow and the magnetic field is strengthened.

 

NO OF TURNS:

The strength of the magnetic field in the DC electromagnet can be increased by increasing the number of turns in the coil. The greater the number of turns the stronger the magnetic  field will be.

wpeB.jpg (14459 bytes)

CHANGING POLARITY:

The magnetic field of an electromagnet has the same characteristics as a natural magnet, including a north and south pole. However, when the direction of current flow through the electromagnet changes, the polarity of the electromagnet changes. The polarity of an electromagnet connected to an AC source will change at the same frequency as the frequency of the AC source. This can be demonstrated in the following illustration. At Time 1 current flow is at zero. There is no magnetic field produced around the electromagnet. At Time 2 current is flowing in a positive direction. A magnetic field builds up around the electromagnet. The electromagnet assumes a polarity with the south pole on the top and the north pole on the bottom. At Time 3 current flow is at its peak  positive value. The strength of the electromagnetic field is at its greatest value. At Time 4 current flow decreases and the magnetic field begins to collapse, until Time 5 when current flow and magnetic field are at zero. Current immediately begins to increase in the opposite direction. At Time 6 current is increasing in a negative direction. The polarity of the electromagnetic field has changed. The north pole is now on top and the south pole is on the bottom. The negative half of the cycle continues through Times 7 and 8, returning to zero at Time 9. This process will repeat 60 times a second with a 60 Hz AC power supply.

 

wpeC.jpg (25150 bytes)

 

INDUCED VOLTAGE:

A conductor moving through a magnetic field will have a voltage induced into it. This electrical principle is used in the operation of AC induction motors. In the following illustration an electromagnet is connected to an AC power source. Another electromagnet is placed above it. The second electromagnet is in a separate circuit. There is no physical connection between the two circuits. Voltage and current are zero in both circuits at Time  1. At Time 2 voltage and current are increasing in the bottom circuit. A magnetic field builds up in the bottom electromagnet. Lines of flux from the magnetic field building up in the bottom electromagnet cut across the top electromagnet. A voltage is induced in the top electromagnet and current flows through it. At Time 3 current flow has reached its peak. Maximum current is flowing in both circuits. The magnetic field around the coil continues to build up and collapse as the alternating current continues to increase and decrease. As the magnetic field moves through space, moving out from the coil as it builds up and back towards the coil as it collapses, lines of flux cut across the top coil. As current flows in the top electromagnet it creates its own magnetic field.

wpeD.jpg (19494 bytes)

 

ELECTROMAGNETIC ATTRACTION:

The polarity of the magnetic field induced in the top electromagnet is opposite the polarity of the magnetic field in  the bottom electromagnet. Since opposite poles attract, the top electromagnet will follow the bottom electromagnet when it is moved.

wpeE.jpg (19292 bytes)

DEVELOPING A  ROTATING MAGENETIC FIELD:

The principles of electromagnetism explain the shaft rotation of an AC motor. Recall that the stator of an AC motor is a hollow cylinder in which coils of insulated wire are inserted.

Page 1   2   3   4


 Go Back

 Go to Top of Page